Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473830

RESUMO

2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of ß-class CA isozymes. BTD derivatives show chemical features meeting the criteria for a potent inhibition of ß-class CA isozymes. Specifically, three ß-CAs (MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobacterial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3, Ki = 15.1-2250 nM; MtCA2, Ki = 38.1-4480 nM) and with a significant selectivity ratio over the off-target human CAs I and II. A computational study was conducted to elucidate the compound structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid-standard reference drugs for Tuberculosis treatment.


Assuntos
Anidrases Carbônicas , Mycobacterium tuberculosis , Tuberculose , Humanos , Estrutura Molecular , Inibidores da Anidrase Carbônica/farmacologia , Isoenzimas/metabolismo , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Antituberculosos/farmacologia , Anidrase Carbônica IX
2.
Bioorg Chem ; 144: 107096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290186

RESUMO

In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.


Assuntos
Inibidores da Anidrase Carbônica , Neoplasias , Semicarbazidas , Humanos , Anidrase Carbônica IX , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica I , Isoformas de Proteínas/metabolismo , Indóis/farmacologia , Estrutura Molecular
3.
Saudi Pharm J ; 31(12): 101866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033749

RESUMO

In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.

4.
J Enzyme Inhib Med Chem ; 38(1): 2235089, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439360

RESUMO

A series of phthalimide-capped benzene sulphonamides (1-22) reported by our group for dengue protease inhibitory activity have been evaluated for their carbonic anhydrase (hCA, EC 4.2.1.1) inhibitory activity against hCA I, hCA II. Compounds 1, 3, 10, and 15 showed hCA I inhibition, whereas 1, 4, and 10 showed hCA II inhibition at nanomolar concentrations. Among these compounds, 1 displayed potent inhibitory activity against the hCA I (Ki = 28.5 nM) and hCA II (Ki = 2.2 nM), being 10 and 6 times more potent than acetazolamide, a standard inhibitor (Ki = 250 nM and 12 nM), respectively. Furthermore, this compound displayed 14-fold selectivity towards the hCA II isoform compared to hCA I. Molecular docking and MD simulations were performed to understand the atomic level interactions responsible for the selectivity of compound 1 towards hCA II.


Assuntos
Benzeno , Anidrases Carbônicas , Estrutura Molecular , Relação Estrutura-Atividade , Anidrase Carbônica I , Anidrase Carbônica II , Simulação de Acoplamento Molecular , Derivados de Benzeno , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Ftalimidas/farmacologia
5.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431826

RESUMO

Human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII were investigated for their inhibitory activity with a series of new Schiff's bases based on quinazoline scaffold 4-27. The hCA I isoform was efficiently inhibited by Schiff's bases 4-6, 10-19, 22-27 and had an inhibition constant (Ki) value of 52.8-991.7 nM compared with AAZ (Ki, 250 nM). Amongst the quinazoline derivatives, the compounds 2, 3, 4, 10, 11, 16, 18, 24, 26, and 27 were proven to be effective hCA II inhibitors, with Ki values of 10.8-52.6 nM, measuring up to AAZ (Ki, 12 nM). Compounds 2-27 revealed compelling hCA IX inhibitory interest with Ki values of 10.5-99.6 nM, rivaling AAZ (Ki, 25.0 nM). Quinazoline derivatives 3, 10, 11, 13, 15-19, and 24 possessed potent hCA XII inhibitory activities with KI values of 5.4-25.5 nM vs. 5.7 nM of AAZ. Schiff's bases 7, 8, 9, and 21 represented attractive antitumor hCA IX carbonic anhydrase inhibitors (CAIs) with KI rates (22.0, 34.8, 49.2, and 45.3 nM, respectively). Compounds 5, 7, 8, 9, 14, 18, 19, and 21 showed hCA I inhibitors on hCA IX with a selectivity index of 22.46-107, while derivatives 12, 14, and 18 showed selective hCA I inhibitors on hCA XII with a selectivity profile of 45.04-58.58, in contrast to AAZ (SI, 10.0 and 43.86). Compounds 2, 5, 7-14, 19-23, and 25 showed a selectivity profile for hCA II inhibitors over hCA IX with a selectivity index of 2.02-19.67, whereas derivatives 5, 7, 8, 13, 14, 15, 17, 20, 21, and 22 showed selective hCA II inhibitors on hCA XII with a selectivity profile of 4.84-26.60 balanced to AAZ (SI, 0.48 and 2.10).


Assuntos
Anidrases Carbônicas , Quinazolinas , Humanos , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Isoenzimas/metabolismo , Anidrases Carbônicas/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica I , Anidrase Carbônica II
6.
Bioorg Chem ; 127: 105969, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926240

RESUMO

Pyrazole-based carbohydrazone hybrids have been considered to be a remarkable class of compounds in pharmaceutical chemistry. Here, we reported bioactivities of 4-(3-(2-(arylidene)hydrazin-1-carbonyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamides (1-27) towards CA isoenzymes (hCA I, hCA II, hCA IX) and human oral squamous cell carcinoma cell line. Compounds 19 (Ki = 10.1 nM, hCA I/hCA IX = 749.6), 22 (Ki = 18.5 nM, hCA I/hCA IX = 429.2), 26 (Ki = 14.5 nM, hCA I/hCA IX = 596.9), 27 (Ki = 21.5 nM, hCA I/hCA IX = 413.1) were more potent and selective inhibitors of cancer-associated hCA IX isoenzyme. Compounds 22 and 26 were also found to be approximately three times more selective hCA IX inhibitors over off-target hCA II at low nanomolar. Compounds 19, 22, 23, 24, and 26 with IC50 of 1.6-1.7 µM showed potent cytotoxicity against human oral squamous cell carcinoma cell line as compared with human gingival fibroblast, producing the tumor-specificity value over 100. This was due to its cytostatic growth inhibition accompanied by a slight but significant dose-dependent increase in cell shrinkage and subG1 cell accumulation and marginal activation of caspase 3 substrates. Bioassay results showed that carbohydrazone-based hybrids could be useful candidates to design novel anticancer compounds and selective carbonic anhydrase inhibitors.


Assuntos
Anidrases Carbônicas , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Humanos , Hidrazonas/farmacologia , Isoenzimas/metabolismo , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Relação Estrutura-Atividade , Sulfonamidas , Zinco
7.
Bioorg Chem ; 126: 105888, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661530

RESUMO

Recently, different mechanisms for inhibition of carbonic anhydrases (CAs) have been reported, such as the classical zinc-binding (exerted by sulfonamides and carboxylic acids) as well as occluding the entrance of the CA active site (exerted by coumarins). In this manuscript, we studied the effect of combining the pharmacopheric parts responsible for these two mechanisms on CA inhibitory potency and selectivity through the design and synthesis of novel coumarins tethered with the zinc-binding sulfonamide (5a-f, 11a-b and 13a-b) or carboxylic acid (7a-f) groups. In addition, another set of coumarin derivatives (9a-b) with no zinc-binding group (ZBG) was designed to act as non-classical CA inhibitors. The synthesized coumarins were examined for their inhibitory activities towards four hCA isoforms I, II, IX and XII. Coumarin sulfonamides (5a-f, 11a-b and 13a-b) effectively inhibited both tumor-associated hCA IX (KIs: 8.9-133.5 nM) and hCA XII (KIs: 3.4-42.9 nM) isoforms, whereas coumarin carboxylic acids (7a-f) weakly affected hCA IX (KIs: 0.49-11.2 µM) and hCA XII (KIs: 0.51-10.1 µM) isoforms. The coumarin based inhibitors featuring zinc-binding sulfonamide or carboxylic acid group achieved low to moderate hCA IX/XII selectivity. Interestingly, the ZBG-free coumarin derivatives (9a-b) emerged not only as effective hCA IX (KIs = 93.3 and 63.8 nM, respectively) and hCA XII (KIs = 85.7 and 72.1 nM, respectively) inhibitors, but also as a highly hCA IX/XII selective inhibitors over the off-target hCA I/II isoforms (SIs > 1000). Coumarin 9a was further evaluated for its anti-proliferative effect on MCF-7 and PANC-1 cancer cell lines, as well as its effect on the cell cycle and apoptosis towards MCF-7 cell line.


Assuntos
Anidrases Carbônicas , Neoplasias , Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Ácidos Carboxílicos/farmacologia , Cumarínicos/química , Humanos , Estrutura Molecular , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Sulfanilamida , Sulfonamidas/química , Zinco
8.
Appl Microbiol Biotechnol ; 106(11): 4065-4074, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612631

RESUMO

We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, ß, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only ß- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s-1 and kcat/KM of 1.41 × 107 s-1 M-1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. KEY POINTS: • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.


Assuntos
Anidrases Carbônicas , Lacticaseibacillus rhamnosus , Acetazolamida/farmacologia , Dióxido de Carbono/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Sulfonamidas/farmacologia
9.
J Enzyme Inhib Med Chem ; 37(1): 930-939, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306936

RESUMO

Human (h) carbonic anhydrase (CAs, EC 4.2.1.1) isoforms IX and XII were recently confirmed as anticancer targets against solid hypoxic tumours. The "three-tails approach" has been proposed as an extension of the forerunner "tail" and "dual-tail approach" to fully exploit the amino acid differences at the medium/outer active site rims among different hCAs and to obtain more isoform-selective inhibitors. Many three-tailed inhibitors (TTIs) showed higher selectivity against the tumour-associated isoforms hCA IX and XII with respect to the off-targets hCA I and II. X-ray crystallography studies were performed to investigate the binding mode of four TTIs in complex with a hCA IX mimic. The ability of the most potent and selective TTIs to reduce in vitro the viability of colon cancer (HT29), prostate adenocarcinoma (PC3), and breast cancer (ZR75-1) cell lines was evaluated in normoxic (21% O2) and hypoxic (3% O2) conditions demonstrating relevant anti-proliferative effects.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
10.
Chemistry ; 28(6): e202103527, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34882858

RESUMO

Carbonic anhydrases (CAs) continue to represent a relevant pharmaceutical target. The need of selective inhibitors and the involvement of these metalloenzymes in many multifaceted diseases boost the search for new ligands able to distinguish among the different CA isoforms, and for multifunctional systems simultaneously able to inhibit CAs and to interfere with other pathological events by interacting with additional targets. In this work, we successfully explored the possibility of preparing new CAs ligands by combining calixarenes with benzensulfonamide units. Inhibition tests towards three human CA isoforms evidenced, for some of the ligands, Ki values in the nanomolar range and promising selectivity. X-ray and molecular modeling studies provided information on the mode of binding of these calixarene derivatives. Thanks to the encouraging results and the structural features typical of the calixarene scaffold, it is then possible to plan for the future the design of multifunctional inhibitors for this class of widely spread enzymes.


Assuntos
Calixarenos , Anidrases Carbônicas , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Humanos , Ligantes , Relação Estrutura-Atividade , Sulfonamidas
11.
J Enzyme Inhib Med Chem ; 36(1): 2118-2127, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607524

RESUMO

New C-glycosides and α,ß-unsaturated ketones incorporating the 4-hydroxy-3-methoxyphenyl (vanillin) moiety as inhibitors of carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated. The inhibition profile of these compounds is presented against four human CA (hCA) isozymes, comprising hCAs I and II (cytosolic, ubiquitous enzymes) and hCAs IX and XII (tumour associated isozymes). Docking analysis of the inhibitors within the active sites of these enzymes has been performed and is discussed, showing that the observed selectivity could be explained in terms of an alternative pocket out of the CA active site where some of these compounds may bind. Several derivatives were identified as selective inhibitors of the tumour-associated hCA IX and XII. Their discovery might be a step in the strategy for finding an effective non-sulfonamide CA inhibitor useful in therapy/diagnosis of hypoxic tumours or other pathologies in which CA isoforms are involved.


Assuntos
Benzaldeídos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Antígenos de Neoplasias/metabolismo , Benzaldeídos/síntese química , Benzaldeídos/química , Sítios de Ligação/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
12.
Bioorg Chem ; 115: 105194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365059

RESUMO

A series of novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides was synthesized and examined as inhibitors of cytosolic (human) hCA I and hCA II, and cancer-related transmembrane hCA IX and hCA XII isoenzymes. AC2 was the most selective inhibitor towards cancer-related hCA IX while AC8 and AC9 selectively inhibited hCA XII over off-target isoenzymes. Anticancer effects of the compounds were evaluated towards human oral squamous cell carcinoma (OSCC) cell lines, human mesenchymal normal oral cells, breast (MCF7), prostate (PC3), non-small cell lung carcinoma cells (A549), and non-tumoral fetal lung fibroblast cells (MRC5). Compounds moderately showed cytotoxicity towards cancer cell lines. Among others, AC6 showed cell-specific cytotoxic activity and induced apoptosis in a dose-dependent manner without a significant change in the cell cycle distribution of MCF7. These results suggest that pyrazole-3-carboxamides need further molecular modification to increase their anticancer drug candidate potency.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
13.
RSC Med Chem ; 12(7): 1187-1206, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34355184

RESUMO

Nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) catalyzes the hydrolysis of extracellular nucleotides. It is expressed by immune cells and some carcinomas, e.g. of kidney and colon. Together with ecto-5'-nucleotidase (CD73), NPP3 produces immunosuppressive, cancer-promoting adenosine, and has therefore been proposed as a target for cancer therapy. Here we report on the discovery of 4-[(4-methylphthalazin-1-yl)amino]benzenesulfonamide (1) as an inhibitor of human NPP3 identified by compound library screening. Subsequent structure-activity relationship (SAR) studies led to the potent competitive NPP3 inhibitor 2-methyl-5-{4-[(4-sulfamoylphenyl)amino]phthalazin-1-yl}benzenesulfonamide (23, K i 53.7 nM versus the natural substrate ATP). Docking studies predicted its binding pose and interactions. While 23 displayed high selectivity versus other ecto-nucleotidases, it showed ancillary inhibition of two proposed anti-cancer targets, the carbonic anhydrases CA-II (Ki 74.7 nM) and CA-IX (Ki 20.3 nM). Thus, 23 may act as multi-target anti-cancer drug. SARs for NPP3 were steeper than for CAs leading to the identification of potent dual CA-II/CA-IX (e.g. 34) as well as selective CA-IX inhibitors (e.g. 31).

14.
Comput Struct Biotechnol J ; 19: 3427-3436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194668

RESUMO

CDCA1 is a very peculiar member of the Carbonic Anhydrase (CA) family. It has been the first enzyme to show an efficient utilization of Cd(II) ions in Nature and a unique adaptation capability to live on the surface ocean. Indeed, in this environment, which is extremely depleted in essential metal ions, CDCA1 can utilize Zn(II) or Cd(II) as catalytic metal to support the metabolic needs of fast growing diatoms. In this paper we demonstrate a further catalytic versatility of this enzyme by using a combination of X-ray crystallography, molecular dynamics simulations and enzymatic experiments. First we identified the CO2 binding site and the way in which this substrate travels from the environment to the enzyme active site. Then, starting from the observation of a structural similarity with the substrate entry route of CS2 hydrolase from Acidanius A1-3, we hypothesized and demonstrated that also CS2 is a substrate for CDCA1. This finding is new and unexpected since until now only few CS2 hydrolases have been characterized, and none of them is reported to have any CO2 hydratase action. The physiological implications of this supplementary catalytic activity still remain to be unveiled. We suggest here that it could represent another ability of diatoms expressing CDCA1 to adapt to the external environment. Indeed, the ability of this enzyme to convert CS2 could represent an alternative source of carbon acquisition for diatoms, in addition to CO2.

15.
Eur J Med Chem ; 217: 113351, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744685

RESUMO

In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.6 nM) was 47 times more selective inhibitor of hCA XI over hCA II compared to the acetazolamide. Compounds 11 (CC50 = 5.2 µM) and 20 (CC50 = 1.6 µM) showed comparative tumor-specificity (TS= > 38.5; >128.2) with doxorubicin (TS > 43.0) towards HSC-2 cancer cell line. Western blot analysis demonstrated that 11 induced slightly apoptosis whereas 20 did not induce detectable apoptosis. A preliminary analysis showed that some correlation of tumor-specificity of 1-20 with the chemical descriptors that reflect hydrophobic volume, dipole moment, lowest hydrophilic energy, and topological structure. Molecular docking simulations were applied to the synthesized ligands to elucidate the predicted binding mode and selectivity profiles towards hCA I, hCA II, and hCA IX.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
16.
J Med Chem ; 64(6): 3100-3114, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33721499

RESUMO

Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Animais , Anticonvulsivantes/uso terapêutico , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Epilepsia/tratamento farmacológico , Humanos , Masculino , Ratos Wistar
17.
Biochem Biophys Res Commun ; 548: 217-221, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647799

RESUMO

Up to date alcohols have been scarcely investigated as carbonic anhydrase (CA) inhibitors. To get more insights into the CA inhibition properties of this class of molecules, in this paper, by means of inhibition assays and X-ray crystallographic studies we report a detailed characterization of the CA inhibition properties and the binding mode to human CA II of benzyl alcohol. Results show that, although possessing a very simple scaffold, this molecule acts as a micromolar CA II inhibitor, which anchors to the enzyme active site by means of an H-bond interaction with the zinc bound solvent molecule. Taken together our results clearly indicate primary alcohols as a class of CA inhibitors that deserve to be more investigated.


Assuntos
Álcool Benzílico/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Água/metabolismo , Zinco/metabolismo , Acetazolamida/farmacologia , Álcool Benzílico/química , Inibidores da Anidrase Carbônica/química , Domínio Catalítico , Isoenzimas/metabolismo , Modelos Moleculares
18.
Bioorg Chem ; 107: 104618, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485104

RESUMO

A library of iodoquinazolinones endowed with benzenesulfonamide moiety was designed and synthesized as human carbonic anhydrase (hCA) inhibitors. Compounds 4-17 showed generally poor activity against the cytosolic hCA I and hCA II isoforms. Contrarily they were more potent and showed a variable spectrum of selectivity against the tumor-specific isoforms hCA IX and hCA XII. The 4-iodophenyl derivative 12 and the 4-pyridinyl derivative 15 were the most active and selective in this series against hCA IX and hCA XII isoforms with KI of 18 and 9 nM, respectively. Compounds 12 and 15 were further screened for their cytotoxicity against MCF-7, HepG-2 and HCT-116 cancer cell lines besides WI38 and MCF-10A normal cell lines to determine their selectivity towards cancer cells. Compound 12 was selective towards HepG-2 and HCT-116 cell lines but less selective towards MCF-7. While compound 15 showed higher selectivity towards HepG-2 than HCT-116 and MCF-7 cell lines. The ability of compounds 12 and 15 to sensitize the cells against gamma irradiation's effect proved their potential radiosensitizing activity. Molecular docking analysis was carried out to discover the possible binding mode of the compounds within the active site of isoform hCA IX and XII. Compounds 12 and 15 revealed the probable fundamental interactions explaining the good activity and selectivity towards the tumor-specific isoforms.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Quinazolinas/química , Radiossensibilizantes/química , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Raios gama , Halogenação , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Radiossensibilizantes/metabolismo , Radiossensibilizantes/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/química
19.
Eur J Med Chem ; 209: 112875, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059188

RESUMO

Ninhydrins show extensive application in organic chemistry and agriculture whereas they have been poorly investigated as bioactive molecules for medicinal chemistry purposes. A series of ninhydrin derivatives was here investigated for the inhibition of human carbonic anhydrases (CAs, EC 4.2.1.1), based on earlier evidence that gem diols are able to coordinate the metal ion from the CA active site. Ninhydrins demonstrated a micromolar inhibitory action against CA I and IX (KIs in the range 0.57-68.2 µM) and up to a nanomolar efficacy against CA II and VII (KIs in the range 0.025-78.2 µM), validated isoforms as targets in several CNS-related diseases. CA IV was instead weakly or poorly inhibited. A computational protocol based on docking, MM-GBSA and metadynamics calculations was used to elucidate the putative binding mode of this type of inhibitors to CA II and CA VII. The findings of this study testify that such pharmacologically underestimated ligands may represent interesting lead compounds for the development of CA inhibitors possessing an innovative mechanism of action, i.e., mono- or bis-coordination to the zinc ion through the diol moiety.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Ninidrina/análogos & derivados , Ninidrina/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Zinco/química , Zinco/metabolismo
20.
J Enzyme Inhib Med Chem ; 35(1): 1834-1839, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32972256

RESUMO

This paper presents the production and kinetic and inhibitory characterisation of ß-carbonic anhydrase from the opportunistic bacterium Staphylococcus aureus (SauBCA). From the eight different carbonic anhydrase (CA) families known to date, humans have only the α-form, whereas many clinically relevant pathogens have ß- and/or γ-form(s). Based on this discovery, ß- and γ-CAs have been introduced as promising new anti-infective targets. The results of this study revealed that recombinant SauBCA possesses significant CO2 hydration activity with a kcat of 1.46 × 105 s-1 and a kcat/KM of 2.56 × 107 s- 1M-1. Its enzymatic function was inhibited by various sulphonamides in the nanomolar - micromolar range, and the Ki of acetazolamide was 628 nM. The best inhibitor was the clinically used sulfamide agent famotidine (Ki of 71 nM). The least efficient inhibitors were zonisamide and dorzolamide. Our work encourages further investigations of SauBCA in an attempt to discover novel drugs against staphylococcal infections.


Assuntos
Anti-Infecciosos/síntese química , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Sulfonamidas/síntese química , Acetazolamida/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Staphylococcus aureus , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiofenos/química , Zonisamida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...